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Abstract - This study is concerned with the application of the boundary element method (BEM) and the
dual reciprocity boundary element method (DRBEM) for solving inverse source problems that occur in
water pollution. Based on the BEM or the DRBEM, the inverse problems are reduced to solving nonlin-
ear systems of algebraic equations which are solved using an iterative sequential quadratic programming
(SQP) method. The numerical results obtained are compared with the corresponding analytical solutions
for several test examples considered.

1. INTRODUCTION
Among all the environmental concerns that have become the focus of both public and scientific interest
over the last four decades, water pollution plays a very important role. This is because water is one of our
most important natural resources and there are many conflicting demands upon it. Knowing the origin of
the source of contamination is probably the most important aspect when attempting to understand, and
therefore to control, the pollution transport process. Thus, the identification of the sources of pollution
in waters is a challenging issue in numerous environmental problems. The aim of this study is to assist
in the development of the necessary techniques to solve this practical problem.

Water contaminants arise from two categories of sources: point sources and distributed or non-point
sources. Point sources of pollution occur when harmful substances are emitted directly into a body of
water, e.g. domestic and industrial sewage pipelines, leaks or spills of industrial chemicals at manufac-
turing facilities, underground injection wells (industrial waste), municipal landfills, leaky sewage pipes,
etc. A non-point source delivers pollutants indirectly through environmental changes. An example of
this type of water pollution is when fertilizer from a field is carried into a stream by rain in the form of
run-off which in turn affects aquatic life.

In general, the identification of one or more point sources of pollution is an easier task than the
identification of non-point sources. However, there are many cases when many sewage pipelines could
be responsible for discharging contaminant into the water, but only certain of them have caused the
pollution in the given situation. Thus, their identification is required. Another example could be the case
when the breakage of an offshore underwater outlet sewage pipeline occurs and this breakage has to be
localised using only some measurements of the contaminant concentration taken at different locations.

In this study the governing equation for the pollution process is taken to be the steady-state convection-
diffusion equation. Over the past 20 years or so, several attempts have been made to solve inverse source
problems associated with this equation. As a result, several methods are currently available for con-
taminant source identification, which analyse the contaminant distribution to determine either the prior
location of the observed contamination or the release history from a known source. One of the early
methods used to backtrack the pollution source location is to run forward simulations and check the
solutions with the measured/current spatial data observed. Owing to the non-uniqueness of the solution
and the infinite number of plausible combinations, one needs to follow an optimisation method to obtain
the best fit solution. In [9] a procedure based on least squares regression and linear programming for
the least absolute error estimation was formulated, the pollution sources being identified by matching
simulated and measured nonreacting solute concentration data. The multitude of approaches on the
contaminant source identification problem can be divided in two categories. One subset of work focuses
on determining the values of a number of parameters describing the source such as, for example, the
location and the strength of a steady state point source, [9], [10]. Another subset of work uses a function
estimate to characterize the source location or release history. In this case, the source characteristics are
not limited to a small set number of parameters, but are instead free to vary in space and time. This last
category includes methods that use a deterministic approach, [2], [3], [5], [15], [22] and others that offer
a stochastic approach to the problem, [6], [13], [16], [23], [24]. Good literature reviews on contaminant
source identification methods can be found in [4] and [13].
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In this paper, the contaminant source identification problem is approached by developing a novel
technique that combines either the BEM or the DRBEM with an iterative procedure based on the SQP
method. This novel technique follows the work from [11] and [12] where the BEM for the heat diffusion
equation has been combined with an iterative algorithm built to minimize a cost function in order to solve
inverse problems for identifying point heat sources. The BEM [19] and the DRBEM [20] combined with
Tikhonov regularisation or truncated singular value decomposition have been employed to solve Cauchy
inverse problems associated to the convection-diffusion equation with constant and variable coefficients,
respectively. However, BEMs have not as yet been employed in order to solve inverse source problems
related with the convection-diffusion equation, thus the novelty of the present work.

2. MATHEMATICAL FORMULATION
We consider a bounded domain Ω ⊂ Rd and we assume that its boundary Γ consists of two parts, S1 and
S2, such that Γ = S1 ∪ S2, where S1, S2 6= ∅ and S1 ∩ S2 6= ∅.

The water pollution process is assumed to be modelled by the following steady-state convection-
diffusion equation:

d∑
m=1

∂2c

∂x2
m

(x)−
d∑

m=1

um(x)
∂c

∂xm
(x)− k(x)c(x) + ψ(x) +

Ns∑
l=1

φlδ(x− xl) = 0, x ∈ Ω, (1)

where c(x) is the concentration of the pollutant, the function um(x) is the xm component of the fluid
velocity, the function k(x) is a decay parameter, ψ(x) is a continuous source, Ns is the number of
point sources, δ is the Dirac delta function and φl and xl ∈ Ω are the lth source strength and location,
respectively.

The inverse source problem under investigation requires finding the solution (c, (xl)l=1,Ns
, (φl)l=1,Ns

)
which satisfies eqn. (1) subject to the following boundary conditions:

c(x) = c̃(x), x ∈ S1, (2)

∂c

∂n
(x) = q̃(x), x ∈ S2, (3)

where c̃ and q̃ are prescribed functions of x. It can be seen that on S1 ∩ S2 both c and ∂c
∂n are specified.

The technique proposed in order to solve numerically the inverse problem given by eqns. (1)−(3) is
based on reducing it to a system of algebraic equations which is then solved by an iterative SQP method.
We mention that BEM is employed in the case when the coefficients um(x) and k(x) are constant and
ψ(x) = 0, while in the general case, when um(x), k(x) and ψ(x) are variable functions, the DRBEM is
employed.

3. THE BEM
In the constant coefficients case, i.e. um(x) and k(x) are constant and ψ(x) = 0, following the idea from
[21], based on the change of variable

c = v exp
(

1
2
u · x

)
, (4)

where the vector u is defined as u = (u1, u2, ..., ud), eqn. (1) recasts as follows:

d∑
m=1

∂2v

∂x2
m

(x) + µ2v(x) = − exp
(
−u · x

2

) Ns∑
l=1

φlδ(x− xl), (5)

where x ∈ Ω and µ = j
(
k + 1

4

∑d
m=1 u

2
m

)1/2

, with j =
√
−1. The boundary conditions (2) and (3)

transform into

v(x) = c̃(x) exp
(
−1

2
u · x

)
, x ∈ S1, (6)

∂v

∂n
(x) +

1
2
v(x)

(
u · ∂x

∂n

)
= q̃(x) exp

(
−1

2
u · x

)
, x ∈ S2. (7)
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The standard BEM procedure is applied to eqn. (5) to obtain the following boundary integral equation
for each boundary node xi ∈ Γ, i = 1, N :

η(xi)v(xi) +
∫

Γ

v(y)
∂E

∂n(y)
(xi, y)dΓ(y)−

∫
Γ

∂v

∂n(y)
(y)E(xi, y)dΓ(y) =

−
Ns∑
l=1

exp
(
−u · xl

2

)
φlE(xi, xl), (8)

where η(xi) = ϑi/(2π), with ϑi the angle between the left and the right tangents on Γ at the boundary
node xi for i = 1, N , and n is the outward normal at the boundary Γ. In particular, if Γ is smooth
then ϑi = π for i = 1, N . The function E(x, y) is the fundamental solution for the Helmholtz operator

∇2 + µ2, i.e. E(x, y) = i
4H

(1)
0 (µr(x, y)), where r(x, y) = |x− y| is the geodesic distance and H

(1)
0 is the

Hankel function of the first kind and of zero order, see for example [1] or [7].
After integrating over each boundary element, eqn. (8) can be written in terms of the nodal values

as follows:

ηivi +
N∑

k=1

Hikvk −
N∑

k=1

Gikqk = −
Ns∑
l=1

Iilφl, i = 1, N, (9)

where q = ∂v/∂n, Hik and Gik are the usual resultants of integration over the boundary elements, see
[8], and

Iil = exp
(
−u · xl

2

)
E(xi, xl), i = 1, N, l = 1, Ns. (10)

After application to all the boundary nodes xi, i = 1, N and incorporating the terms ηi onto the
diagonal of H, eqn. (9) can be expressed in matrix form as follows:

Hv −Gq = −Iφ, (11)

where H and G are the N ×N matrices of the coefficients Hik and Gik, v and q are two vectors of order
N containing the boundary values of v and ∂v

∂n , respectively, I is an N ×Ns matrix of the coefficients Iil
and φ is a vector of order Ns containing the values of the strengths of the sources.

4. THE DRBEM
In the variable coefficients case, i.e. um(x), k(x) and ψ(x) are variable functions, the BEM cannot be
employed since the fundamental solution for eqn. (1) is not available. Thus a more general method, i.e.
the DRBEM must be used.

The governing eqn. (1) is written in the following form:

d∑
m=1

∂2c

∂x2
m

(x) +
Ns∑
l=1

φlδ(x− xl) = b(x, c,∇c), x ∈ Ω, (12)

where

b(x, c,∇c) =
d∑

m=1

um(x)
∂c

∂xm
(x) + k(x)c(x)− ψ(x). (13)

In this way the left-hand side of eqn. (12) is dealt with by using the fundamental solution of the Laplace
equation and the proprieties of the Dirac delta function, whilst all the integrals corresponding to the
right-hand side b are taken to the boundary using the approximation

b '
N+L∑
j=1

αjfj (14)

where αj are initially unknown coefficients and fj are approximating functions. In the numerical results
presented in Section 6, the thin plate spline (TPS) function f = r2 ln r was considered as the approxi-
mating function. However, we mention that other radial basis functions (RBFs) were also considered in
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our study, especially the augmented thin plate spline (ATPS) which involves the following approximation
of the source term b:

b '
N+L∑
j=1

αj(r2j ln rj) + β0 + β1x1 + ...+ βdxd, (15)

with β0, β1,...,βd constants determined with the help of some equilibrium constraints. It should be noted
that for the test examples investigated in this study the TPS and the ATPS approximating functions
provided very similar results.

The DRBEM procedure, [14] and [17], is applied to give∫
Ω

(
d∑

m=1

∂2c

∂x2
m

)GdΩ +
∫

Ω

(
Ns∑
l=1

φlδ(x− xl))GdΩ =
N+L∑
j=1

αj

∫
Ω

(
d∑

m=1

∂2ĉj
∂x2

m

)GdΩ, (16)

where ĉj are particular solutions of eqn. (1) for j = 1, (N + L) and G is the fundamental solution of the
Laplace equation.

On applying Green’s second identity and the proprieties of the Dirac delta function to expression (16)
the following boundary integral equation for each source node i = 1, (N + L), is obtained:

ηici +
∫

Γ

cG′dΓ−
∫

Γ

qGdΓ +
Ns∑
l=1

φlG(xi, xl) =
N+L∑
j=1

αj

(
ηiĉij +

∫
Γ

ĉjG
′dΓ−

∫
Γ

q̂jGdΓ
)
, (17)

where G′ = ∂G/∂n and q̂ = ∂ĉ/∂n. The coefficients ηi are defined as

ηi =
{
ϑi/(2π), for i = 1, N
1, for i = (N + 1), (N + L).

(18)

Equation (17) is then written in discretised form, with summations over Γk boundary elements for
k = 1, N replacing the integrals. (N + L) DRBEM collocation nodes are used for the discretisation and
the following equation for a source node i is obtained:

ηici +
N∑

k=1

Hikck −
N∑

k=1

Gikqk +
Ns∑
l=1

Iilφl =
N+L∑
j=1

αj

(
ηiĉij +

N∑
k=1

Hik ĉkj −
N∑

k=1

Gik q̂kj

)
, (19)

where i = 1, (N + L) are the source nodes, k are the boundary elements and j are the DRBEM collocation
points. Hik and Gik are the usual resultants of integration over the boundary elements, see [8], and the
coefficient Iil is the following:

Iil = G(xi, xl), i = 1, N, l = 1, Ns. (20)

After application to all boundary nodes xi, i = 1, N and incorporating the terms ηi onto the diagonal
of H, eqn. (19) can be expressed in matrix form as follows:

Hc−Gq + Iφ =
N+L∑
j=1

αj(Hĉj −Gq̂
j
), (21)

where H and G are (N + L) × (N + L) matrices, c and q are two vectors of order (N + L), I is an
(N + L)×Ns matrix of the coefficients Iil and φ is a vector of order Ns.

If each of the vectors ĉj and q̂
j
is considered to be a single column of the matrices Ĉ and Q̂, respectively,

then eqn. (21) can be written without summation to produce

Hc−Gq + Iφ = (HĈ−GQ̂)α. (22)

The DRBEM expansion for every term of b, [18], is employed and the following expression is obtained:

Hc−Gq + Iφ = S

[
d∑

m=1

Um
∂F
∂xm

F−1 + K

]
c− Sψ, (23)
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where S = (HĈ −GQ̂)F−1. The matrices Ĉ, Q̂, F−1 and ∂F
∂xm

are all known since f is defined. The
other matrices, namely Um and K, and the vector ψ are also known, as the coefficients um(x), k(x) and
ψ(x) of eqn. (1) are known.

5. AN ITERATIVE SQP METHOD
As in Sections 3 and 4, the inverse source problem is reduced to a system of algebraic equations of the
form (11) and (23) after the application of the BEM and the DRBEM, respectively. As these systems of
equations are non-linear, special care must be taken when solving them.

In the following we present an iterative SQP proposed in order to solve the system of eqns. (11) and
we mention that the same technique, with very few and straightforward modifications, is employed to
solve the system of eqns. (23).

In the two-dimensional case, and when all the boundary values for v and q are specified (S1 = S2 = Γ),
then the system of eqns. (11) contains N eqns. and 3Ns unknowns, namely xl, yl and φl for l = 1, Ns.
When some of the boundary values for v and q are not known (S1 6= S2), then those values will act as
unknowns in the system of eqns. (11), making the number of unknowns greater than 3Ns.

It is observed that only the strengths of the sources appear linearly in the system of eqns. (11), while
the locations of the sources appear as nonlinear unknowns. The iterative SQP method employed in this
study consists in solving at each iteration a system of linear algebraic eqns. that results from a direct
problem. Briefly, the method used to solve the nonlinear system of eqns. (11) in the two-dimensional
case is the following:

(i) Choose an initial guess for the locations (x0
l , y

0
l ) and the strengths φ0

l of the sources of pollution,
where l = 1, Ns. This initial guess should be made in such a way that some bounds on the unknown
variables are satisfied, namely (x0

l , y
0
l ) ∈ Ω and φ0

l ≥ 0, for l = 1, Ns, as the location of the source should
be inside the solution domain and the strength of the source a non-negative number.

(ii) Separate the boundary conditions into two categories. The first set of boundary conditions contains
the minimum number of boundary conditions which generate a well-posed direct problem when combined
with the Helmholtz equation (5) and the initial guesses for the unknown variables made in the first step.
This set of boundary conditions is used to form a vector vA. The second set of boundary conditions
contains the information that is not necessary for solving the direct problem. These boundary conditions
form a vector, denoted by vB , that is used in the stopping criterion of the iterative procedure. It should
be noted that the vector vB contains the observed values of v at the sampling locations, which are usually
all situated on the boundary in order to benefit from the advantage of the BEM, i.e. the possibility of
using only boundary values. However, internal sampling points can easily be accomodated in the iterative
BEM without reducing the performance of the method.

(iii) A positive real function of 3Ns variables, called the objective function, is defined as follows:

F ((xl, yl, φl), l = 1, Ns) = ‖v(num) − vB‖2, (24)

where the vector v(num) contains some of the numerical results for v and q obtained by solving the direct
problems considered at each iteration, chosen such that the difference from the definition of the function
F given in the expression (24) is relevant.

(iv) Solve the nonlinear programming problem that is the minimisation of the smooth function F
subject to some bounds on the variables using a sequential quadratic programming (SQP) method. This
minimisation problem is stated in the following form:

Minimise F subject to
{

(xl, yl) ∈ Ω
φl ≥ 0 , l = 1, Ns. (25)

This problem is solved using the NAG Fortran subroutine E04UCF , see NAG Fortran Library Manual,
Mark 20. The numerical solution of the problem (25) is obtained iteratively by this subroutine containing
both the value of the function F and the values of the variables xl, yl and φl for l = 1, Ns, where the
function F reaches its minimal value. These last values also represent the numerical solution for the
inverse source problem. This subroutine allows the user to change the accuracy of the numerical solution
by modifying an optimality tolerance parameter. Broadly speaking, this parameter indicates the number
of correct figures desired in the objective function F at the solution. For example, if the optimality toler-
ance parameter is 10−7 and E04UCF terminates successfully, the final value of the objective function F
should have approximately seven correct figures. We mention here that in all the test examples consid-
ered, the optimality tolerance parameter was taken to be the same as the machine precision, namely 10−16.
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6. NUMERICAL RESULTS AND DISCUSSION
We investigate some examples in order to test the method proposed for solving the inverse source problem
associated with the two-dimensional steady-state convection-diffusion equation. The solution domain for
all the examples presented herein is chosen to be the rectangular domain Ω = {(x, y) : −2 < x < 2,−1 <
y < 1} bounded by the rectangle Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where Γ1 = {2} × [−1, 1), Γ2 = ([−2, 2]× {1}),
Γ3 = {−2} × [−1, 1) and Γ4 = ((−2, 2)× {−1}). This geometry is intended to approximate a region of a
polluted river from one or more pollutant point sources. We consider several examples whose analytical
solution is known, such that a comparison between the numerical results obtained by the method and
some exact solutions can be made.

Example 1. We present the results obtained using the BEM and the iterative SQP method for
the constant-coefficients case when the method correctly assumes the existence of three point sources of
pollution. The governing convection-diffusion equation is taken to be the following:

∇2c(x, y)− ∂c

∂x
(x, y)− 1

2
c(x, y) +

3
2
δ ((x, y), (−1.5, 0.7)) + δ ((x, y), (−1,−0.5)) +

6
5
δ ((x, y), (1, 0.5)) = 0,

(26)
where (x, y) ∈ Ω. As presented in Section 3, the convection-diffusion eqn. (26) corresponds to the
following equation:

∇2v(x, y)− 3
4
v(x, y) =− exp

(
−x

2

)[
−3

2
δ ((x, y), (−1.5, 0.7))−

δ ((x, y), (−1,−0.5))− 6
5
δ ((x, y), (1, 0.5))

]
. (27)

Exact Initial 0% 1% 3% 5% 10%
solution guess noise noise noise noise noise

x1 −1.5 0 −1.5 + O(10−8) −1.49968 −1.49916 −1.49896 −1.49853
y1 0.7 0 0.7 + O(10−8) 0.70170 0.70524 0.70708 0.71901
φ1 1.5 0 1.5 + O(10−8) 1.50515 1.51439 1.51847 1.53569
x2 −1 0 −1 + O(10−9) −0.99995 −1.00009 −1.00024 −1.00151
y2 −0.5 0 −0.5 + O(10−8) −0.51384 −0.54109 −0.55442 −0.62843
φ2 1 0 1 + O(10−8) 0.98489 0.95599 0.94229 0.87157
x3 1 0 1 + O(10−9) 0.99780 0.99348 0.99138 0.98017
y3 0.5 0 0.5 + O(10−9) 0.49573 0.48709 0.48276 0.45741
φ3 1.2 0 1.2 + O(10−9) 1.20673 1.22012 1.22670 1.26307
F ((xl, φl), l = 1, 3) 7.80537E − 16 2.15E − 4 1.92E − 3 3.42E − 3 2.12E − 2

Number of iterations 67 71 64 80 102

Table 1: The numerical results obtained using 60 CBEs and input data with 0%, 1%, 3%, 5% and 10%
noise, for Example 1.

We take the analytical solution for the the partial differential eqn. (27) the following:

v(x, y) =
1.5
2π

exp
(

1.5
2

)
K0

(√
3

2

√
(x+ 1.5)2 + (y − 0.7)2

)
+ (28)

1
2π

exp
(

1
2

)
K0

(√
3

2

√
(x+ 1)2 + (y + 0.5)2

)
+

1.2
2π

exp
(

1.2
2

)
K0

(√
3

2

√
(x− 1)2 + (y − 0.5)2

)

where K0 is the modified Bessel function of the second kind and order zero, see [1], and we assume that
v is specified on S1 = Γ1 ∪Γ2 ∪Γ3 and q is specified on S2 = Γ2 ∪Γ4. In practical problems, the flux q on
the banks of the river is equal to 0 and therefore it is natural to consider the values of q on S2 as known.
This example also assumes that the concentration can be measured at some points upstream (on Γ3) and
downstream (on Γ1) of the source of pollution and at some points on one side of the river (on Γ2).

The domain is discretised using 60 constant boundary elements (CBEs), i.e. 10 elements on Γ1, 20 on
Γ2, 10 on Γ3 and 20 on Γ4, and the initial guesses are chosen to be x0

1 = 0, y0
1 = 0, φ0

1 = 0, x0
2 = 0, y0

2 = 0,
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φ0
2 = 0, x0

3 = 0, y0
3 = 0 and φ0

3 = 0. In order to simulate the measurement error, random noisy variables
are added to the exact values of the concentration input data at each nodal point. Therefore we perturb
the input data v on S1 = Γ1 ∪ Γ2 ∪ Γ3 as follows: vδ

i = vi + δvi, δvi = G05DDF (0, σi), σi = |vi| p
100 ,

where δvi is a Gaussian random variable with mean zero and standard deviation σi, generated by the
NAG subroutine G05DDF (see NAG Fortran Library Manual, Mark 19) and p is the percentage of noise.

Table 1 presents the numerical results obtained when both exact and noisy input data is used. We
observe that all three sources are found very accurately. Also, the results for the cases when 1%, 3%,
5% and 10% noise is added indicate the stability of the method, as less noise in the input data generates
more accurate numerical solutions.

Example 2. We investigate the use of the DRBEM combined with the iterative SQP method in
the case of pollution caused by two point sources which are a-priori correctly estimated. The governing
convection-diffusion equation with variable coefficients is considered to be the following:

∇2c(x, y)− (1− y2)
∂c

∂x
(x, y)− 1

2
c(x, y) + ψ(x, y) +

7δ ((x, y)− (−1,−0.5)) + 5δ ((x, y)− (−1.5, 0.7)) = 0, (29)

where (x, y) ∈ Ω and

ψ(x, y) = y2 ∂c1
∂x

(x, y)− ∂c2
∂x

(x, y) +
1
16
c2(x, y), (30)

with

c1(x, y) =
7
2π

exp
(
x+ 1

2

)
K0

(√
3

2

√
(x+ 1)2 + (y + 0.5)2

)
+

5
2π

exp
(
x+ 1.5

2

)
K0

(√
3

2

√
(x+ 1.5)2 + (y − 0.7)2

)
(31)

and

c2(x, y) = exp
(
−1

4
x+

1
4
y2

)
. (32)

Exact Initial 0% 1% 3% 5% 10%
solution guess noise noise noise noise noise

x1 −1 0 −1.0004 −1.0015 −1.0038 −1.0062 −1.0120
y1 −0.5 0 −0.4986 −0.4985 −0.4984 −0.4983 −0.4981
φ1 7 0 7.0157 7.0290 7.0558 7.0826 7.1504
x2 −1.5 0 −1.5001 −1.4994 −1.4982 −1.4970 −1.4939
y2 0.7 0 0.7005 0.7004 0.7004 0.7003 0.7001
φ2 5 0 4.9904 4.9883 4.9840 4.9798 4.9695
F ((xl, φl), l = 1, 2) 2.2 · 10−3 4.8 · 10−3 2.8 · 10−2 7.5 · 10−2 2.9 · 10−1

Number of iterations 48 68 43 41 44

Table 2: The numerical results obtained using the distribution 60− 48 and input data with 0%, 1%, 3%,
5% and 10% noise, for Example 2.

The inverse source problem under investigation is defined by considering the following boundary
conditions: it is assumed that, from measurements, the concentration c is known on all the boundary
Γ. Also, the flux on Γ2 and Γ4 is assumed to be known, as in a practical situation the flux is zero on
the banks of the river. With these premises, the inverse source problem requires the identification of the
locations and strengths of the two source of pollution. The analytical solution for the concentration c is
known and it is given by c(x, y) = c1(x, y) + c2(x, y), where c1 and c2 are those defined in (31) and (32),
respectively.

The iterative DRBEM with the distribution 60 − 48 using discontinuous linear boundary elements
(DLBEs) is employed when both exact and noisy input data is considered. The distribution 60−48 means
that 60 DLBEs are considered on the boundary with the following distribution: 10 on Γ1, 20 on Γ2, 10
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on Γ3 and 20 on Γ4. Also, four small rectangles are considered, having the following widths and lengths:
0.2 and 0.4, 0.4 and 0.8, 0.6 and 1.2, and 0.8 and 1.6, and 12 uniformly distributed points are taken on
each of these rectangles. The approximating function chosen is the TPS. Table 2 presents the numeri-
cal results obtained in this case, which show a very high accuracy and indicate the stability of the method.

Example 3. The constant-coefficient case is investigated when two point sources are expected to be
found, but the real situation corresponds to the pollution being caused by only a single point source. We
wish to present the way in which the method deals with this type of situation. Therefore the process of
pollution is considered to be governed by the following convection-diffusion equation:

∇2c(x, y)− ∂c

∂x
(x, y) + δ ((x, y), (−1,−0.5)) = 0, (33)

where (x, y) ∈ Ω. Using the change of variable c = v exp
(

x
2

)
, eqn. (33) can be recast as follows:

∇2v(x, y)− 1
4
v(x, y) = − exp

(
−x

2

)
δ ((x, y), (−1,−0.5)) (34)

and the same boundary conditions as in Example 1 are considered. The analytical solution for eqn. (34)
has the following form:

v(x, y) =
1
2π

exp
(

1
2

)
K0

(
1
2

√
(x+ 1)2 + (y + 0.5)2

)
. (35)

The initial guesses are taken to be x0
1 = 0, y0

1 = 0, φ0
1 = 0, x0

2 = 0, y0
2 = 0 and φ0

2 = 0, and 60
CBEs are used for the discretisation. The problem is solved using both exact and noisy input data and
the numerical results obtained are presented in Table 3. It is observed that although we wish to identify
only one source, the numerical method assumes the existence of two sources. However, these two sources
are found to be virtually at the same location, each of them having virtually the same strength, which is
equal to approximately half the strength of the source we want to identify. The numerical results indicate
the accuracy, convergence and stability of the method.

Exact Initial 0% 1% 3% 5% 10%
solution guess noise noise noise noise noise

x1 −1 0 −1 + O(10−8) −1.00002 −1.00008 −1.00014 −1.00029
y1 −0.5 0 −0.5 + O(10−9) −0.50121 −0.50365 −0.50611 −0.51238
φ1 1 0 0.5 + O(10−8) 0.49988 0.49963 0.49939 0.49877
x2 none 0 −1 + O(10−8) −1.00002 −1.00008 −1.00014 −1.00029
y2 none 0 −0.5 + O(10−9) −0.50121 −0.50365 −0.50611 −0.51238
φ2 none 0 0.5 + O(10−8) 0.49988 0.49963 0.49939 0.49877
F ((xl, φl), l = 1, 2) 1.65200E − 17 1.43E − 4 1.29E − 3 3.58E − 3 1.43E − 2

Number of iterations 14 13 12 13 13

Table 3: The numerical results obtained using 60 CBEs and input data with 0%, 1%, 3%, 5% and 10%
noise, for Example 3.

It should also be mentioned here that other examples have been investigated for the case when the
method assumes the existence of two sources, but in reality there is only one. Two contrasting types
of results have been obtained, depending on the example being considered. The first type is the one
presented in this example, namely two sources are found at virtually the same location, the sum of their
strengths being equal to the value of the source strength we wish to identify. The second type, present
in other examples, also found two sources, one of them being the real source, while the other source
was identified at a random location inside the solution domain but with a very small strength, e.g. a
value of O(10−10). Therefore, we may say that the method deals very well with this situation. The only
inconvenience is that more computational time is required than in the case when the number of sources
is known correctly, as the matrix I and the vector φ from eqns. (11) and (23) have higher dimensions and
therefore their storage occupies more memory in the computer and their use in mathematical operations
requires more computational time.
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7. CONCLUSIONS
In this study we have presented a numerical technique for solving the inverse source problem for the
steady-state convection-diffusion equation with constant or variable coefficients. The BEM and the
DRBEM are applied in the constant and variable coefficients case, respectively, and the resulting nonlinear
system of algebraic eqns. is solved using an iterative procedure based on the SQP method.

The BEM proved to be very suitable for situations when the number of sources is correctly or over
estimated. In the over estimated case the numerical solutions were of two distinct types, both suggesting
very clearly the real number of sources and at the same time approximating accurately their location
and strength. Although it has been seen that the method deals very effectively with over estimated
number of sources, it is advisable to use the method with a number of sources that is relevant for each
case considered and not artificially increase the number of sources that are sought, as this increases
the computational time needed by the method. We also mention that when the number of sources is
under estimated then the method finds the numerical solution that, among all the solutions with the
corresponding under estimated number of sources, best fits the real situation. However, from a practical
point of view, this solution is irrelevant. In this case, the value of the objective function has been found
to be a very effective and reliable indicator of how relevant is the numerical solution. More specifically,
when an irrelevant solution is obtained the objective function takes values which are at least one order of
magnitude higher than those taken when a relevant solution is obtained. Thus, if the number of sources
is unknown, then the method should be employed for different estimates of the number of sources and
then the numerical solution with the smallest corresponding value for the objective function should be
considered.

Future work should investigate the use of the DRBEM in cases when the number of sources is over
or under estimated. Also the development of similar numerical techniques to deal with inverse problems
for the transient convection-diffusion equation should be considered.
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